找回密码
 register

QQ登录

只需一步,快速开始

[*网络运维*] [计算机科学] MathJax LaTeX数学公式输入初级入门

[复制链接]

[*网络运维*] [计算机科学] MathJax LaTeX数学公式输入初级入门

[复制链接]
Waylee

主题

0

回帖

9723

积分

仙帝

积分
9723
Waylee 2024-11-2 04:32 | 显示全部楼层 |阅读模式 | Google Chrome | Windows 10

马上注册,查看网站隐藏内容!!

您需要 登录 才可以下载或查看,没有账号?register

×

MathJax公式总结

基本用法

行内公式

$math$或 \(math\)
$f(x) = 3x + 7$ 和 \(f(x) = 3x + 7\) 效果是一样的  
跨行公式

跨行公式

\[math\] 或  $$math$$

字符

普通字符在数学公式中含义一样,除了 # $\% \& \~ _ \^ { }; 若要在数学环境中表示这些符号,需要分别表示为\# \$ \% \& _ { },即在个字符前加上\。

上标和下标

用 ^ 来表示上标,用 _ 来表示下标,看一简单例子:

$$\sum_{i=1}^n a_i=0$$  
$$f(x)=x^{x^x}$$

效果:

$$\sum_{i=1}^n a_i=0$$

$$f(x)=x^{x^x}$$

希腊字母

$$\alpha A \beta B \gamma \Gamma \delta \Delta \epsilon E \\\\
\varepsilon  \zeta Z \eta H \theta \Theta \vartheta \\\\
\iota I \kappa K \lambda \Lambda \mu M \nu N \\\\
\xi \Xi o O \pi \Pi \varpi  \rho P \\\\
\varrho  \sigma \Sigma \varsigma  \tau T \upsilon \Upsilon \\\\
\phi \Phi \varphi  \chi X \psi \Psi \omega \Omega $$

$$\alpha A \beta B \gamma \Gamma \delta \Delta \epsilon E \\\\ \varepsilon  \zeta Z \eta H \theta \Theta \vartheta \\\\ \iota I \kappa K \lambda \Lambda \mu M \nu N \\\\ \xi \Xi o O \pi \Pi \varpi  \rho P \\\\ \varrho  \sigma \Sigma \varsigma  \tau T \upsilon \Upsilon \\\\ \phi \Phi \varphi  \chi X \psi \Psi \omega \Omega$$

分数及开方

$$\frac{1}{4}$$
表示开平方:$$\sqrt{x^4}$$
表示开 n 次方: $$\sqrt[4]{(a+b)^4}$$

效果:

$$\frac{1}{4}$$

表示开平方:

$$\sqrt{x^4}$$

表示开 n 次方:

$$\sqrt[4]{(a+b)^4}$$

矢量

$$\vec{a} \cdot \vec{b}=0$$

效果:

$$\vec{a} \cdot \vec{b}=0$$

累乘

$$\prod_{i=0}^n \frac{1}{i^2}$$

效果:

$$\prod_{i=0}^n \frac{1}{i^2}$$

省略号(3个点)

\ldots 表示跟文本底线对齐的省略号;\cdots表示跟文本中线对齐的省略号,

比如:

$$f(x\_1,x\_x,\ldots,x\_n) = x\_1^2 + x\_2^2 + \cdots + x\_n^2$$

效果:

$$f(x\_1,x\_x,\ldots,x\_n) = x\_1^2 + x\_2^2 + \cdots + x\_n^2$$

括号和分隔符

() 和 [ ] 和 | 对应于自己;
{} 对应于 { };
|| 对应于 |。
当要显示大号的括号或分隔符时,要对应用 \left 和 \right,如:

$$\[f(x,y,z) = 3y^2 z \left( 3 + \frac{7x+5}{1 + y^2}\right).\]$$

效果:

$$\[f(x,y,z) = 3y^2 z \left( 3 + \frac{7x+5}{1 + y^2}\right).\]$$

\left. 和 \right. 只用与匹配,本身是不显示的,比如,要输出:  

$$\left. \frac{du}{dx} \right|_{x=0}.$$

则用

$$\left. \frac{du}{dx} \right|_{x=0}.$$

多行的数学公式

$$
\begin{eqnarray}
\cos 2\theta & = & \cos^2 \theta - \sin^2 \theta \\\\
& = & 2 \cos^2 \theta - 1.
\end{eqnarray}
$$
\begin{eqnarray} \cos 2\theta & = & \cos^2 \theta - \sin^2 \theta \\\\ & = & 2 \cos^2 \theta - 1. \end{eqnarray}

其中&是对其点,表示在此对齐。*使latex不自动显示序号,如果想让latex自动标上序号,则把去掉

矩阵

The characteristic polynomial $\chi(\lambda)$ of the $3 \times 3$~matrix  

$$ 
\left( \begin{array}{ccc}  
a & b & c \\\\
d & e & f \\\\
g & h & i \end{array} \right)
$$

is given by the formula

$$
\chi(\lambda) = \left| \begin{array}{ccc}  
\lambda - a & -b & -c \\\\
-d & \lambda - e & -f \\\\
-g & -h & \lambda - i \end{array} \right|.
$$

The characteristic polynomial $\chi(\lambda)$ of the $3 \times 3$~matrix

\left( \begin{array}{ccc}   a & b & c \\\\ d & e & f \\\\ g & h & i \end{array} \right)

is given by the formula

\chi(\lambda) = \left| \begin{array}{ccc}   \lambda - a & -b & -c \\\\ -d & \lambda - e & -f \\\\ -g & -h & \lambda - i \end{array} \right|.

c表示向中对齐,l表示向左对齐,r表示向右对齐。

导数(Derivatives)

$\frac{du}{dt} $ and $\frac{d^2 u}{dx^2}$

效果:
$\frac{du}{dt}$ and $\frac{d^2 u}{dx^2}$

respectively. The mathematical symbol  is produced using \partial. Thus the Heat Equation

$$\frac{\partial u}{\partial t}  
= h^2 \left( \frac{\partial^2 u}{\partial x^2}  
+ \frac{\partial^2 u}{\partial y^2}  
+ \frac{\partial^2 u}{\partial z^2}\right)$$

效果:

\frac{\partial u}{\partial t} =h^2 \left( \frac{\partial^2 u}{\partial x^2} +\frac{\partial^2 u}{\partial y^2} +\frac{\partial^2 u}{\partial z^2}\right)

极限(Limits)

$$ \lim_{x \to +\infty}, \inf_{x > s} , \sup_K$$
$$ \lim_{x \to 0} \frac{3x^2 +7x^3}{x^2 +5x^4} = 3.$$

效果:

$$\lim_{x \to +\infty}, \inf_{x > s} , \sup_K$$

$$\lim_{x \to 0} \frac{3x^2 + 7x^3}{x^2 + 5x^4} = 3$$

求和(Sum)

$$\sum_{i=1}^{2n}.$$
$$\sum_{k=1}^n k^2 = \frac{1}{2} n (n+1).$$

效果:

$$\sum_{i=1}^{2n}.$$

$$\sum_{k=1}^n k^2 = \frac{1}{2} n (n+1).$$

积分(Integrals)

$$\int_a^b f(x)\,dx.$$

$$\int_a^b f(x)\,dx.$$

The integral sign is typeset using the control sequence \int, and the
limits of integration (in this case a and b are treated as a subscript and a superscript on the integral sign.  

Most integrals occurring in mathematical documents begin with an
integral sign and contain one or more instances of d followed by another (Latin or Greek) letter, as in dx, dy and dt. To obtain the correct appearance one should put extra space before the d, using \,.

$$ \int_0^{+\infty} x^n e^{_x} \,dx = n!.$$  
$$ \int \cos \theta \,d\theta = \sin \theta.$$  
$$ \int_{x^2 + y^2 \leq R^2} f(x,y)\,dx\,dy  = \int_{\theta=0}^{2\pi} \int_{r=0}^R  
f(r\cos\theta,r\sin\theta) r\,dr\,d\theta.$$
$$ \int_0^R \frac{2x\,dx}{1+x^2} = \log(1+R^2).$$

$$\int_0^{+\infty} x^n e^{_x} \,dx = n!.$$
  

$$\int \cos \theta \,d\theta = \sin \theta.$$
  

\int_{x^2 + y^2 \leq R^2} f(x, y) \, dx \, dy = \int_{\theta=0}^{2\pi} \int_{r=0}^{R} f(r\cos\theta, r\sin\theta) \, r \, dr \, d\theta.

$$\int_0^R \frac{2x\,dx}{1+x^2} = \log(1+R^2).$$

In some multiple integrals (i.e., integrals containing more than one integral sign) one finds that LaTeX puts too much space between the integral signs. The way to improve the appearance of of the integral is to use the control sequence ! to remove a thin strip of unwanted space. Thus, for example, the multiple integral.

特殊字符

关系运算符

±:\pm

×:\times

÷:\div

∣:\mid

∤:\nmid

⋅:\cdot

∘:\circ

∗:\ast

⨀:\bigodot

⨂:\bigotimes

⨁:\bigoplus

≤:\leq

≥:\geq

≠:\neq

≈:\approx

≡:\equiv

∑:\sum

∏:\prod

∐:\coprod

集合运算符

∅:\emptyset

∈:\in

∉:\notin

⊂:\subset

⊃:\supset

⊆:\subseteq

⊇:\supseteq

⋂:\bigcap

⋃:\bigcup

⋁:\bigvee

⋀:\bigwedge

⨄:\biguplus

⨆:\bigsqcup

对数运算符

log:\log

lg:\lg

ln:\ln

三角运算符

⊥:\bot

∠:\angle

30°:30^∘:\circ

sin:\sin

cos:\cos

tan:\tan

cot:\cot

sec:\sec

csc:\csc

微积分运算符

′:\prime

∫:\int

∬:\iint

∭:\iiint

∬∬:\iiiint

∮:\oint

lim:\lim

∞:\infty

∇:\nabla

逻辑运算符

∵:\because

∴:\therefore

∀:\forall

∃:\exists

≠:\not=

\not>:\not>

⊄:\not\subset

戴帽符号

y^:\hat{y}

yˇ:\check{y}

y˘:\breve{y}

连线符号

a+b+c+d¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯:\overline{a+b+c+d}

a+b+c+d–––––––––––––:\underline{a+b+c+d}

$$\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0}$$
:\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0}

箭头符号

↑:\uparrow

↓:\downarrow

⇑:\Uparrow

⇓:\Downarrow

→:\rightarrow

←:\leftarrow

⇒:\Rightarrow

⇐:\Leftarrow

⟶:\longrightarrow

⟵:\longleftarrow

⟹:\Longrightarrow

⟸:\Longleftarrow

您需要登录后才可以回帖 登录 | register

本版积分规则

雪舞知识库 | 浙ICP备15015590号-1 | 萌ICP备20232229号|浙公网安备33048102000118号 |网站地图|天天打卡

GMT+8, 2024-12-4 15:45 , Processed in 0.093582 second(s), 12 queries , Redis On.

Powered by XueWu Licensed

Copyright © Tencent Cloud.

快速回复 返回顶部 返回列表